Simulation Wrapper#
- class EarlyStopping.SimulationWrapper(design, true_signal=None, true_noise_level=None, monte_carlo_runs=5, noise=None, response_noiseless=None, critical_value=None, interpolation=False, computation_threshold=1e-08, cores=5)#
[Source] A wrapper class for collecting montecarlo simulation data.
Parameters
design:
ndarray
. The design matrix of the simulation, representing the model matrix.true_signal:
ndarray
. The true signal or target vector used for generating simulated response values.true_noise_level:
float
. The standard deviation of the normally distributed noise applied to the response.monte_carlo_runs:
int
. Defines the number of Monte-Carlo runs to perform in the simulation.noise:
ndarray, optional
. Specifies an initial noise matrix; defaults to None, in which case noise will be generated as needed.response_noiseless:
ndarray, optional
. Represents the noiseless response vector, if available. Default is None.critical_value:
float, optional
. Critical value to be used for early stopping. Default is None leading to theoretical values being used.interpolation:
bool, default=False
. Specifies whether to use interpolation within the simulation.computation_threshold:
float, default=10 ** (-8)
. A small threshold to control numerical computations in the simulation procedures.Methods
run_simulation_truncated_svd(
max_iteration
,diagonal
,data_set_name
)Run montecarlo simulation for truncated SVD.
run_simulation_landweber(
max_iteration
,learning_rate
,``data_set_name``)Run montecarlo simulation for the Landweber iteration.
run_simulation_conjugate_gradients(
max_iteration
,data_set_name
)Run montecarlo simulation for conjugate gradients.
- SimulationWrapper.run_simulation_truncated_svd(max_iteration, diagonal=False, data_set_name=None)#
Runs a simulation for an inverse problem using truncated Singular Value Decomposition (SVD). The function generates a noisy response based on the specified noise level and performs a Monte-Carlo simulation to collect various metrics related to the estimator’s performance.
Parameters
max_iteration:
int
. Specifies the maximum number of iterations to use within the simulation.diagonal:
bool
, optional. Specifies whether to treat the matrix as diagonal. Default is False.data_set_name:
str
, optional. If specified, the results are saved to a CSV file with this name.Returns
results_df:
pd.DataFrame
. DataFrame containing the results of the Monte-Carlo simulation.The resulting DataFrame can be saved to a CSV file if data_set_name is provided.
- SimulationWrapper.run_simulation_conjugate_gradients(max_iteration, data_set_name=None)#
Runs a simulation for an inverse problem using the Conjugate Gradients method. This function generates a noisy response based on the specified noise level and performs a Monte-Carlo simulation to collect various metrics related to the estimator’s performance.
Parameters
max_iteration:
int
. Specifies the maximum number of iterations to use within the simulation.data_set_name:
str
, optional. If specified, the results are saved to a CSV file with this name.Returns
results:
list
. A list of results from the Monte-Carlo simulation.
- SimulationWrapper.run_simulation_landweber(max_iteration, learning_rate=1, data_set_name=None)#
Runs a simulation for an inverse problem using the Landweber iteration method. The function generates a noisy response based on the specified noise level and and performs a Monte-Carlo simulation to collect various metrics related to the estimator’s performance.
Parameters
max_iteration:
int
. Specifies the maximum number of iterations to use within the simulation.learning_rate:
float
orstr
, optional. Specifies the learning rate for the Landweber iteration. If set to “auto”, the method will search for an optimal learning rate. Default is 1.data_set_name:
str
, optional. If specified, the results are saved to a CSV file with this name.Returns
results_df:
pd.DataFrame
. DataFrame containing the results of the Monte-Carlo simulation.