Conjugate gradients#

class EarlyStopping.ConjugateGradients(design, response, initial_value=None, true_signal=None, true_noise_level=None, computation_threshold=1e-08)#

[Source] A class to perform estimation using the conjugate gradients algorithm for the normal equation.

Description

Consider the linear model

\[Y = Af + \delta Z,\]

where \(Z\) is a \(n\)-dimensional standard normal distribution. The conjugate gradient estimate \(\hat{f}^{(m)}\) at the integer iteration index \(m\) is iteratively calculated by the conjugate gradients for the normal equation algorithm with initial value \(\hat{f}_0\), see Björck (1996, Algorithm 7.4.1).

Parameters

design: ndarray. nxp design matrix of the linear model. ( \(A \in \mathbb{R}^{n \times p}\) )

response: ndarray. n-dim vector of the observed data in the linear model. ( \(Y \in \mathbb{R}^{n}\) )

initial_value: array, default = None. Determines the zeroth step of the iterative procedure. Default is zero. ( \(\hat{f}_0\) )

true_signal: ndarray, default = None. p-dim vector for simulation purposes only. For simulated data the true signal can be included to compute additional quantities alongside the iterative procedure. ( \(f \in \mathbb{R}^{p}\) )

true_noise_level: float, default = None. For simulation purposes only. Corresponds to the standard deviation of normally distributed noise contributing to the response variable. ( \(\delta \geq 0\) )

computation_threshold: float, default = 10 ** (-8). Threshold used to terminate the conjugate gradients algorithm.

Attributes

sample_size: int. Sample size of the linear model. ( \(n \in \mathbb{N}\) )

parameter_size: int. Parameter size of the linear model. ( \(p \in \mathbb{N}\) )

iteration: int. Current conjugate gradient iteration of the algorithm. ( \(m \in \mathbb{N}\) )

conjugate_gradient_estimate: ndarray. Conjugate gradient estimate at the current iteration for the data given in design and response. ( \(\hat{f}^{(m)}\) )

conjugate_gradient_estimate_list: list. List containing the conjugate gradient estimates at integer iteration indices up to the current conjugate gradient iteration.

residuals: ndarray. Lists the sequence of the squared residuals between the observed data and the conjugate gradient estimator.

strong_empirical_risk: ndarray. Only exists if true_signal was given. Lists the values of the strong empirical error between the conjugate gradient estimator and the true signal up to the current conjugate gradient iteration.

weak_empirical_risk: ndarray. Only exists if true_signal was given. Lists the values of the weak empirical error between the conjugate gradient estimator and the true signal up to the current conjugate gradient iteration.

Methods

iterate(number_of_iterations = 1)

Performs a specified number of iterations of the conjugate gradients algorithm.

get_estimate(iteration)

Returns the conjugate gradient estimator at iteration.

get_discrepancy_stop(critical_value, max_iteration, interpolation = False)

Returns the early stopping index according to the discrepancy principle with emergency stop.

get_residual(iteration)

Returns the squared residual at iteration.

get_strong_empirical_risk(iteration)

Returns the strong empirical error at iteration.

get_weak_empirical_risk(iteration)

Returns the weak empirical error at iteration.

get_strong_empirical_oracle(max_iteration, interpolation = False)

Returns the strong empirical oracle up to max_iteration.

get_weak_empirical_oracle(max_iteration, interpolation = False)

Returns the weak empirical oracle up to max_iteration.

ConjugateGradients.iterate(number_of_iterations=1)#

Performs number_of_iterations iterations of the conjugate gradients algorithm

Parameters

number_of_iterations: int. The number of iterations to perform.

ConjugateGradients.get_estimate(iteration)#

Returns the conjugate gradient estimate at a possibly noninteger iteration

Parameters

iteration: int or float. The (possibly noninteger) iteration at which the conjugate gradient estimate is requested.

Returns

conjugate_gradient_estimate: ndarray. The conjugate gradient estimate at iteration.

ConjugateGradients.get_discrepancy_stop(critical_value, max_iteration, interpolation=False)#

Returns early stopping index based on discrepancy principle up to max_iteration

Parameters

critical_value: float. The critical value for the discrepancy principle. The algorithm stops when \(\Vert Y - A \hat{f}^{(m)} \Vert^{2} \leq \kappa^{2},\) where \(\kappa\) is the critical value.

max_iteration: int. The maximum number of total iterations to be considered.

interpolation: boolean, default = False. If interpolation is set to True, the early stopping index can be noninteger valued.

Returns

early_stopping_index: int or float. The first iteration at which the discrepancy principle is satisfied or \(\Vert A^{\top}(Y - A \hat{f}^{(m)}) \Vert^{2} \leq C,\) where \(C\) is the computation_threshold for the emergency stop. (None is returned if the stopping index is not found.)

ConjugateGradients.get_residual(iteration)#

Returns the squared residual at a possibly noninteger iteration index

Parameters

iteration: int or float. Iteration index where the squared residual should be calculated.

Returns

residual: float. The squared residual at the requested iteration index.

ConjugateGradients.get_strong_empirical_risk(iteration)#

Returns the strong empirical error at a possibly noninteger iteration index

Parameters

iteration: int or float. Iteration index where the error should be calculated.

Returns

strong_empirical_risk: float. The strong empirical error at the requested iteration index.

ConjugateGradients.get_weak_empirical_risk(iteration)#

Returns the weak empirical error at a possibly noninteger iteration index

Parameters

iteration: int or float. Iteration index where the error should be calculated.

Returns

weak_empirical_risk: float. The weak empirical error at the requested iteration index.

ConjugateGradients.get_strong_empirical_oracle(max_iteration, interpolation=False)#

Returns the strong empirical oracle up to max_iteration

Parameters

max_iteration: int. The maximum number of total iterations to be considered.

interpolation: boolean, default = False. If interpolation is set to True, the strong empirical oracle can be noninteger valued.

Returns

strong_empirical_oracle: int or float. The iteration index at which the strong empirical error is minimal along the iteration path up to max_iteration. If not unique, the smallest one is returned.

ConjugateGradients.get_weak_empirical_oracle(max_iteration, interpolation=False)#

Returns the weak empirical oracle up to max_iteration

Parameters

max_iteration: int. The maximum number of total iterations to be considered.

interpolation: boolean, default = False. If interpolation is set to True, the weak empirical oracle can be noninteger valued.

Returns

weak_empirical_oracle: int or float. The iteration index at which the weak empirical error is minimal along the iteration path up to max_iteration. If not unique, the smallest one is returned.