EarlyStopping#
Early stopping is a Python library implementing computationally efficient model selection methods for iterative estimation procedures based on the theory in:
Early stopping for statistical inverse problems via truncated SVD estimation.
Blanchard, M. Hoffmann, M. Reiß. In Electronic Journal of Statistics 12(2): 3204-3231 (2018).
Optimal adaptation for early stopping in statistical inverse problems.
Blanchard, M. Hoffmann, M. Reiß. In SIAM/ASA Journal of Uncertainty Quantification 6(3), 1043–1075 (2018).
Early stopping for L2-boosting in high-dimensional linear models.
Stankewitz. arXiv:2210.07850 [math.ST] (2022).
Estimation and inference of treatment effects with L2-boosting in high-dimensional settings.
Kueck, Y. Luo, M. Spindler, Z. Wang. In Journal of Econometrics 234(2), 714-731 (2023).
Early stopping for conjugate gradients in statistical inverse problems.
Hucker, M. Reiß. arXiv:2406.15001 [math.ST] (2024).